Space Aliens - CircuitPython Game

Mr. Coxall

Jan 22, 2020

Contents

Install CircuitPython S
Your IDE 7
2.1 Hello, World! o e e 8
Image Banks 11
Game 13
4.1 Background. e e e e e 19
4.2 Ship/Player e 20
Menu System 21
5.1 MenuSceneo e e e e e e e 21
5.2 SplashScene e e e e 22
5.3 Game OVer SCeNe v v i e e e e e e e e e e e e e e e e e e e 25

Space Aliens - CircuitPython Game

In this project we will be making an old school style video game for the Adafruit PyBadge. We will be using Circuit-
Python and the stage library to create a Asteroids like game. The stage library makes it easy to make classic video
games, with helper libraries for sound, sprites and collision detection. The game will also work on other variants of
PyBadge hardware, like the PyGamer and the EdgeBadge. The full completed game code with all the assets can be
found here.

The guide assumes that you have prior coding experience, hopefully in Python. It is designed to use just introductory
concepts. No Object Oriented Programming (OOP) are used so that students in particular that have completed their
first course in coding and know just variables, if statements, loops and functions will be able to follow along.

Parts

You will need the following items:

Adafruit PyBadge for MakeCode Arcade, CircuitPython or Arduino
PRODUCT ID: 4200

Contents 1

https://www.adafruit.com/product/4200
https://circuitpython.org
https://circuitpython.org
https://learn.adafruit.com/circuitpython-stage-game-library
https://en.wikipedia.org/wiki/Asteroids_(video_game)
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4400
https://github.com/MotherTeresaHS/ICS3U-2019-Group0
https://www.adafruit.com/product/4200

Space Aliens - CircuitPython Game

Pink and Purple Braided USB A to Micro B Cable - 2 meter long
PRODUCT ID: 4148

So you can move your CircuitPython code onto the PyBadge.

You might also want:

Lithium Ion Polymer Battery Ideal For Feathers - 3.7V 400mAh
PRODUCT ID: 3898

So that you can play the game without having it attached to a computer with a USB cable.

2 Contents

https://www.adafruit.com/product/4148
https://www.adafruit.com/product/3898

Space Aliens - CircuitPython Game

Mini Oval Speaker - 8 Ohm 1 Watt
PRODUCT ID: 3923

If you want lots of sound. Be warned, the built in speaker is actually pretty loud.

3D Printed Case

I did not create this case. I altered Adafruit’s design. One of the screw posts was hitting the built in speaker and the

Contents 3

https://www.adafruit.com/product/4148
https://www.tinkercad.com/things/fHOWOY88j9A?utm_source=externalsite&utm_medium=embedver1&utm_campaign=embed
https://learn.adafruit.com/pybadge-case/

Space Aliens - CircuitPython Game

case was not closing properly. I also added a piece of plastic over the display ribbon cable, to keep it better protected.
You will need 4 x 3M screws to hold the case together.

4 Contents

CHAPTER 1

Install CircuitPython

Fig. 1: Clearing the PyBadge and loading the CircuitPython UF2 file

Before doing anything else, you should delete everything already on your PyBadge and install the latest version of
CircuitPython onto it. This ensures you have a clean build with all the latest updates and no leftover files floating
around. Adafruit has an excellent quick start guide here to step you through the process of getting the latest build
of CircuitPython onto your PyBadge. Adafruit also has a more detailed comprehensive version of all the steps with
complete explanations here you can use, if this is your first time loading CircuitPython onto your PyBadge.

Just a reminder, if you are having any problems loading CircuitPython onto your PyBadge, ensure that you are using
a USB cable that not only provides power, but also provides a data link. Many USB cables you buy are only for
charging, not transfering data as well. Once the CircuitPython is all loaded, come on back to continue the tutorial.

https://learn.adafruit.com/adafruit-pybadge/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Space Aliens - CircuitPython Game

6 Chapter 1. Install CircuitPython

CHAPTER 2

Your IDE

One of the great things about CircuitPython hardware is that it just automatically shows up as a USB drive when you
attach it to your computer. This means that you can access and save your code using any text editor. This is particularly
helpful in schools, where computers are likely to be locked down so students can not load anything. Also students
might be using Chromebooks, where only “authorized” Chrome extensions can be loaded.

If you are working on a Chromebook, the easiest way to start coding is to just use the built in Text app. As soon as you
open or save a file with a . py extension, it will know it is Python code and automatically start syntax highlighting.

Fig. 1: Chromebook Text app

If you are using a non-Chromebook computer, your best beat for an IDE is Mu. You can get it for Windows, Mac,
Raspberry Pi and Linux. It works seamlessly with CircuitPython and the serial console will give you much needed
debugging information. You can download Mu here.

https://chrome.google.com/webstore/detail/text/mmfbcljfglbokpmkimbfghdkjmjhdgbg?hl=en
https://codewith.mu
https://codewith.mu/en/download

1

R N v

Space Aliens - CircuitPython Game

©

Code with Mu: a simple Python editor for beginner programmers.

Comre [

I +) LE) x i @M Q Q)G (B2

Mode Merw Load Save an‘ Debug REPL Plokter Ioom-in Tocmrout Theme heck Help Gt
hellopy 3
1 print{"Hello from Mul")
2
Runnireg: Fello. py
Hello from Mu!
33>
Saved file: Mome/ntollimu. codeelio.py Python 0}
[T
Fig. 2: Mu IDE

Since with CircuitPython devices you are just writing Python files to a USB drive, you are more than welcome to use
any IDE that you are familiar using.

2.1 Hello, World!

Yes, you know that first program you should always run when starting a new coding adventure, just to ensure everything
is running correctly! Once you have access to your IDE and you have CircuitPython loaded, you should make sure
everything is working before you move on. To do this we will do the traditional “Hello, World!” program. By default
CircuitPython looks for a file called code . py in the root directory of the PyBadge to start up. You will place the
following code in the code . py file:

print ("Hello, World!™")

As soon as you save the file onto the PyBadge, the screen should flash and you should see something like:

Although this code does work just as is, it is always nice to ensure we are following proper coding conventions,
including style and comments. Here is a better version of Hello, World! You will notice that have a calltoamain ()
function. This is common in Python code but not normally seen in CircuitPython. I am including it because by
breaking the code into different functions to match different scenes, eventually will be really helpful.

#!/usr/bin/env python3

Created by : Mr. Coxall
Created on : January 2020
This program prints out Hello, World! onto the PyBadge

(continues on next page)

8 Chapter 2. Your IDE

Space Aliens - CircuitPython Game

| =iCode done running. Waiti
ng for reload.
soft reboot
code.py output:
Hello, World!

Code done running.
ng for reload.

Fig. 3: Hello, World! program on PyBadge

(continued from previous page)

def main () :
this function prints out Hello, World! onto the PyBadge
print ("Hello, World!™")

if name == "_ _main_ ":
main ()

Congratulations, we are ready to start.

2.1. Hello, World! 9

Space Aliens - CircuitPython Game

10 Chapter 2. Your IDE

CHAPTER 3

Image Banks

Before we can start coding a video game, we need to have the artwork and other assets. The stage library from
CircuitPython we will be using is designed to import an “image bank”. These image banks are 16 sprites staked on top
of each other, each with a resolution of 16x16 pixels. This means the resulting image bank is 16x256 pixels in size.
Also the image bank must be saved as a 16-color BMP file, with a pallet of 16 colors. To get a sprite image to show
up on the screen, we will load an image bank into memory, select the image from the bank we want to use and then
tell CircuitPython where we would like it placed on the screen.

Fig. 1: Image Bank for Ship and Lasers for the game

Fig. 2: Image Bank for Asteroids and Enemies for the game

Fig. 3: Image Bank for Background for the game
For sound, the stage library can play back * . wav files in PCM 16-bit Mono Wave files at 22KHz sample rate. Adafruit
has a great learning guide on how to save your sound files to the correct format here.

If you do not want to get into creating your own assets, other people have already made assets available to use. All the
assets for this guide can be found in the GitHub repo here:

* ship and lasers image bank

* asteroids and enemies image bank
* background image bank

* coin sound

e pew sound

* boom sound

¢ crash sound

11

https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/convert-files
https://github.com/Davin-Rousseau/ICS3U-2019-Group6/blob/master/ship-and-lasers.bmp
https://github.com/Davin-Rousseau/ICS3U-2019-Group6/blob/master/meteor.bmp
https://github.com/Davin-Rousseau/ICS3U-2019-Group6/blob/master/asteroids-background.bmp
https://github.com/Davin-Rousseau/ICS3U-2019-Group6/blob/master/coin.wav
https://github.com/Davin-Rousseau/ICS3U-2019-Group6/blob/master/pew.wav
https://github.com/Davin-Rousseau/ICS3U-2019-Group6/blob/master/boom.wav
https://github.com/Davin-Rousseau/ICS3U-2019-Group6/blob/master/crash.wav

Space Aliens - CircuitPython Game

Please download the assets and place them on the PyBadge, in the root directory. Your previoud “Hello, World!”
program should restart and run again each time you load a new file onto the PyBadge, hopefully with no errors once
more.

Assets from other people can be found here.

12 Chapter 3. Image Banks

https://github.com/MotherTeresaHS/ICS3U-2019-Group0/tree/master/docs/image_bank

20

21

22

23

CHAPTER 4

Game

The game scene starts out with the player/ship spawning in the middle of the screen. The player can move around
using the d-pad and shoot lasers using the a button. Once the game starts, Asteroids will come down from the top of
the screen, while two types of enemies come from the left side of the screen moving right. The aim of the game is to
kill/avoid all enemies/asteroids before losing your three lives. On the main menu, there is an option to play on easy or
hard mode (a for easy, b for hard(code shown in menu part of this documentation)). Destroying asteroids nets you five
points on easy(fifteen points for hard), while enemies net you ten points on easy(thirty points for hard). The game gets
progressively harder as you kill more enemies and asteroids. Once all three of your lives are gone, GAME OVER!

Here is the code for the main game:

def game_scene (diff_mul) :
this function is the game scene
background image bank ready
background_bank = stage.Bank.from_bmpl6 ("background.bmp")
image_bank_0 = stage.Bank.from_bmpl6 ("meteor.bmp")
image_bank_1 = stage.Bank.from_bmpl6 ("ship-and-lasers.bmp")
background = stage.Grid (background_bank, constants.SCREEN_GRID_X, constants.SCREEN_
—GRID_Y)
for x_location in range (constants.SCREEN_GRID_X) :
for y_location in range (constants.SCREEN_GRID_Y):
tile_picked = random.randint (0, 15)
background.tile(x_location, y_location, tile_picked)
a_button = constants.button_state["button_up"]
shoot_sound = open ("pew.wav", 'rb'")
boom_sound = open ("boom.wav", 'rb'")
sound = ugame.audio
sound.stop ()
sound.mute (False)

Buttons that you want to keep state information on
a_button = constants.button_state["button_up"]
start_button = constants.button_state["button_up"]
select_button = constants.button_state["button_up"]

(continues on next page)

13

24

25

26

27

28

29

39

40

41

42

43

44

45

46

47

48

49

50

51

53

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Space Aliens - CircuitPython Game

(continued from previous page)

sprites = []
ship = stage.Sprite(image_bank_1, 0, 80, 64)
sprites.insert (0, ship) # insert at the top of sprite list

score = 0

scoretext = []

score_text = stage.Text (width=29, height=14, font=None,
palette=constants.SCORE_PALETTE, buffer=None)

score_text.cursor (0, 0)

score_text .move (1, 118)

score_text.text ("Points: {0}".format (score))

scoretext.append(score_text)

lives = 3

livestext = []

lives_text = stage.Text (width=29, height=14, font=None,
palette=constants.LIVES_PALETTE, buffer=None)

lives_text.cursor (0, 0)

lives_text.move (1, 1)

lives_text.text ("Lives: {0}".format (lives))

livestext.append(lives_text)

asteroids = []
for asteroids_number in range (constants.TOTAL_ASTEROIDS * diff_mul):
single_asteroid = stage.Sprite(image_bank_0, 0, constants.OFF_TOP_SCREEN,
—constants.OFF_TOP_SCREEN)
asteroids.append(single_asteroid)

enemy_1 = []
for enemy_number_1 in range (constants.TOTAL_ENEMY_1 % diff _mul):
single_1 = stage.Sprite (image_bank_0, 1, constants.OFF_TOP_SCREEN, constants.
—+OFF_TOP_SCREEN)
enemy_1l.append(single_1)

enemy_2 = []
for enemy_number_2 in range (constants.TOTAL_ENEMY_2 % diff_mul):
single_2 = stage.Sprite (image_bank_0, 2, constants.OFF_TOP_SCREEN, constants.
—»OFF_TOP_SCREEN)
enemy_2.append (single_2)

lasers = []
for laser_number in range (constants.TOTAL_NUMBER_OF_LASERS) :
single_laser = stage.Sprite(image_bank_1, 8, constants.OFF_TOP_SCREEN,
—constants.OFF_TOP_SCREEN)
lasers.append (single_laser)

enemy_count = 1

show_enemy (asteroids)

show_enemy_2 (enemy_1)

show_enemy_3 (enemy_2)

death_mul = 1

set frame rate to 60fps

game = stage.Stage (ugame.display, 60)

set layers, items show up in order

game.layers = sprites + enemy_1 + enemy_2 + asteroids + lasers + scoretext +
—livestext + [background]

render background and sprite list

(continues on next page)

14 Chapter 4. Game

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Space Aliens - CircuitPython Game

(continued from previous page)

game.render_block ()
repeat forever, game loop
while True:

get user input

keys = ugame.buttons.get_pressed()
if keys & ugame.K_X != 0:
if a_button == constants.button_state["button_up"]:
a_button = constants.button_state["button_just_pressed"]
elif a_button == constants.button_state["button_ just_pressed"]:
a_button = constants.button_state["button_still_pressed"]
else:
if a_button == constants.button_state["button _still_pressed"]:
a_button = constants.button_state["button_released"]
else:
a_button = constants.button_state["button_up"]
if a_button == constants.button_state["button_just_pressed"]:

for laser_number in range(len(lasers)):
if lasers[laser_number].x < 0:
lasers[laser_number] .move (ship.x, ship.y)
sound.stop ()
sound.play (shoot_sound)
break
for laser_number in range(len(lasers)):
if lasers[laser_number].x > 0O:
if ship.rotation == O:
lasers[laser_number] .set_frame (rotation=0)
lasers[laser_number] .move (lasers[laser_number].x, lasers|[laser_
—number] .y — constants.LASER_SPEED)
if lasers[laser_number].y < constants.OFF_SCREEN_Y:

lasers[laser_number] .move (constants.OFF_SCREEN_X, constants.

—OFF_SCREEN_Y)
elif ship.rotation == 1:
lasers[laser_number] .set_frame (rotation=1)
lasers[laser_number] .move (lasers|[laser_number].x + constants.
—LASER_SPEED, lasers[laser_number].y)
if lasers([laser_number].x > 160:

lasers[laser_number] .move (constants.OFF_SCREEN_X, constants.

—OFF_SCREEN_Y)
elif ship.rotation == 2:
lasers[laser_number] .set_frame (rotation=0)
lasers[laser_number] .move (lasers[laser_number] .x, lasers|[laser_
—number] .y + constants.LASER_SPEED)
if lasers[laser_number].y > 128:

lasers[laser_number] .move (constants.OFF_SCREEN_X, constants.

< OFF_SCREEN_Y)

elif ship.rotation == 3:
lasers[laser_number] .set_frame (rotation=1)
lasers[laser_number] .move (lasers[laser_number].xXx — constants.

—LASER_SPEED, lasers[laser_number].y)
if lasers[laser_number].x < 5:

lasers[laser_number] .move (constants.OFF_SCREEN_X, constants.

<»OFF_SCREEN_Y)
Move ship right
if keys & ugame.K_RIGHT:
state_of_button = 2
if ship.x > constants.SCREEN_X - constants.SPRITE_SIZE:

(continues on next page)

15

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Space Aliens - CircuitPython Game

(continued from previous page)

ship.move (constants.SCREEN_X - constants.SPRITE_SIZE, ship.y)
else:
ship.move (ship.x + constants.SHIP_MOVEMENT_SPEED % death_mul » diff_mul,
— ship.y)
ship.set_frame (rotation=1)
pass

Move ship left
if keys & ugame.K_LEFT:
state_of_button = 4
if ship.x < 5:
ship.move (5, ship.y)
else:
ship.move (ship.x - constants.SHIP_MOVEMENT_SPEED % death_mul x diff_mul,
— ship.y)
ship.set_frame (rotation=3)
pass

Move ship up
if keys & ugame.K_UP:
state_of_button = 1
if ship.y < 0:
ship.move (ship.x, 0)
else:
ship.move (ship.x, ship.y - constants.SHIP_MOVEMENT_SPEED * death_mul »*_
—diff_mul)
ship.set_frame (rotation=0)
pass

Move ship down
if keys & ugame.K_DOWN:
state_of_button = 3
if ship.y > constants.SCREEN_Y - constants.SPRITE_SIZE:
ship.move (ship.x, constants.SCREEN_Y - constants.SPRITE_SIZE x death_
—mul » diff _mul)
else:
ship.move (ship.x, ship.y + constants.SHIP_MOVEMENT_SPEED * death_mul =
—diff_mul)
ship.set_frame (rotation=2)
pass

update game logic
for asteroid_number in range (len (asteroids)) :
if asteroids[asteroid_number].x > 0:
asteroids[asteroid_number] .move (asteroids[asteroid_number].x,
—asteroids[asteroid_number].y + constants.ENEMY_SPEED «* diff_mul % death_mul)
if asteroids[asteroid_number].y > constants.SCREEN_Y:
asteroids[asteroid_number] .move (constants.OFF_SCREEN_X, constants.
—OFF_SCREEN_Y)
show_enemy (asteroids)
for enemy_number_1 in range(len(enemy_1)):
if enemy_1[enemy_number_1].y > 0:
enemy_1[enemy_number_1] .move (enemy_1[enemy_number_1].x + constants.
—ENEMY_SPEED * death_mul % diff_mul, enemy_1[enemy_number_1].y)
if enemy_1[enemy_number_1].x > constants.SCREEN_X:
enemy_1[enemy_number_1] .move (constants.OFF_SCREEN_X, constants.OFF_
—SCREEN_Y)

(continues on next page)

16 Chapter 4. Game

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

Space Aliens - CircuitPython Game

(continued from previous page)

show_enemy_2 (enemy_1)
for enemy_number_2 in range (len(enemy_2)) :
if enemy_2[enemy_number_2].y > 0:
enemy_2 [enemy_number_2] .move (enemy_2 [enemy_number_2].x + constants.
—ENEMY_SPEED x death_mul » diff_mul, enemy_2[enemy_number_2].y)
if enemy_2[enemy_number_2].x > constants.SCREEN_X:
enemy_2 [enemy_number_2] .move (constants.OFF_SCREEN_X, constants.OFF_
<»SCREEN_Y)
show_enemy_3 (enemy_2)
for laser_number in range(len(lasers)):
if lasers[laser_number].x > 0:
for enemy_number_1 in range(len(enemy_1)):
if enemy_1[enemy_number_1].x > 0:
if stage.collide(lasers[laser_number].x, lasers[laser_number].y,
lasers[laser_number].x + 16, lasers|[laser_
—number].y + 16,
enemy_1 [enemy_number_1].x, enemy_1l[enemy_
—number_1].vy,
enemy_1[enemy_number_1].x + 16, enemy_1l[enemy_
—number_1].y + 16):
enemy_1[enemy_number_1] .move (constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
lasers[laser_number] .move (constants.OFF_SCREEN_X, constants.
—OFF_SCREEN_Y)
score += 10+diff _mul
score_text.clear ()
score_text.cursor (0, 0)
score_text .move(l, 118)
score_text.text ("Points: {0}".format (score))
sound.stop ()
sound.play (boom_sound)
show_enemy_2 (enemy_1)
show_enemy_2 (enemy_1)
death_mul += (1/30)
for enemy_number_2 in range (len (enemy_2)):
if enemy_2[enemy_number_2].x > 0O:
if stage.collide(lasers[laser_number].x, lasers[laser_number].y,
lasers[laser_number].x + 16, lasers|[laser_
—number] .y + 16,
enemy_2 [enemy_number_2].x, enemy_2[enemy_
—number_2].vy,
enemy_2 [enemy_number_2].x + 16, enemy_2[enemy_
—number_2].y + 16):
enemy_2 [enemy_number_2] .move (constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
lasers[laser_number] .move (constants.OFF_SCREEN_X, constants.
< OFF_SCREEN_Y)
score += 10+diff mul
score_text.clear ()
score_text.cursor (0, 0)
score_text .move (1, 118)
score_text.text ("Points: {0}".format (score))
sound.stop ()
sound.play (boom_sound)
show_enemy_3 (enemy_2)
show_enemy_3 (enemy_2)
death_mul += (1/30)

(continues on next page)

17

218

219

220

221

223

224

225

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

Space Aliens - CircuitPython Game

(continued from previous page)

for asteroid_number in range (len (asteroids)) :
if asteroids[asteroid_number].x > 0:
if stage.collide(lasers|[laser_number].x, lasers[laser_number].y,
lasers[laser_number].x + 16, lasers|[laser_
—number] .y + 16,
asteroids[asteroid_number] .x,
—asteroids[asteroid_number] .y,
asteroids[asteroid_number].x + 16,
—asteroids[asteroid_number].y + 16):
asteroids[asteroid_number] .move (constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
lasers[laser_number] .move (constants.OFF_SCREEN_X, constants.
—OFF_SCREEN_Y)
score += 5xdiff_mul
score_text.clear ()
score_text.cursor (0,0)
score_text.move (1, 118)
score_text.text ("Points: {0}".format (score))
sound.stop ()
sound.play (boom_sound)
show_enemy (asteroids)
show_enemy (asteroids)
death_mul += (1/30)
for enemy_number_1 in range (len(enemy_1)):
if enemy_1[enemy_number_1].x > 0:
if stage.collide (enemy_1[enemy_number_1].x, enemy_1l[enemy_number_1].y,
enemy_1[enemy_number_1].x + 16, enemy_1l[enemy_number_
1].y + 16,
ship.x, ship.y,
ship.x + 16, ship.y + 16):
lives —= 1
ship.move (=100, -100)
sound.stop ()
sound.play (boom_sound)
time.sleep (1)
if lives == 0:
game_over_scene (score)
else:
lives_text.clear ()
lives_text.cursor (0,0)
lives_text .move (1, 1)
lives_text.text ("Lives: {0}".format (lives))
ship.move (random.randint (16, 146), random.randint (16, 106))
for enemy_number_2 in range (len(enemy_2)) :
if enemy_2[enemy_number_2].x > 0O:
if stage.collide (enemy_2 [enemy_number_2].x, enemy_2[enemy_number_2].y,
enemy_2 [enemy_number_2].x + 16, enemy_2[enemy_number_
—2].y + 16,
ship.x, ship.y,
ship.x + 16, ship.y + 16):
lives —= 1
ship.move (=100, —-100)
sound.stop ()
sound.play (boom_sound)
time.sleep (1)
if lives == 0:
game_over_scene (score)

(continues on next page)

18 Chapter 4. Game

268

269

271

272

274

275

277

290

291

292

293

294

295

Space Aliens - CircuitPython Game

(continued from previous page)

else:
lives_text.clear ()
lives_text.cursor (0,0)
lives_text.move (1, 1)
lives_text.text ("Lives: {0}".format (lives))
ship.move (random.randint (16, 146), random.randint (16, 106))
for asteroid_number in range (len (asteroids)) :
if asteroids[asteroid_number].x > 0:
if stage.collide (asteroids[asteroid_number].x, asteroids[asteroid_
—number] .y,
asteroids|[asteroid_number].x + 16, asteroids[asteroid_
—number] .y + 16,
ship.x, ship.y,
ship.x + 16, ship.y + 16):
lives —= 1
ship.move (=100, —-100)
sound.stop ()
sound.play (boom_sound)
time.sleep (1)
if lives ==
game_over_scene (score)
else:
lives_text.clear ()
lives_text.cursor (0,0)
lives_text.move (1, 1)
lives_text.text ("Lives: {0}".format (lives))
ship.move (random.randint (16, 146), random.randint (16, 106))
redraw sprite 1list
game.render_sprites(sprites + asteroids + enemy_1l + enemy_2 + lasers)
game.tick ()

The full game code is here for full use for anybody wishing to make this game :)

4.1 Background

For the game, the background is space themed, just like the original arcade game(see home page link for example). To
make the background show up for this game, we take the background image bank which is already created and take
random images from the bank to paste it across the PyBadge screen. First, we set up our background image bank:

background image bank ready
background_bank = stage.Bank.from_bmpl6 ("background.bmp")

Then, we create a loop where we take a single image from the background bank and paste it on the screen. This loop
occurs until the background fills up the whole PyBadge screen:

background = stage.Grid(background_bank, constants.SCREEN_GRID_X, constants.SCREEN_
<.GRID_Y)
for x_location in range (constants.SCREEN_GRID_X) :
for y_location in range (constants.SCREEN_GRID_Y) :
tile_picked = random.randint (0, 15)
background.tile(x_location, y_location, tile_picked)

The background now shows up on the screen!

4.1. Background 19

Space Aliens - CircuitPython Game

4.2 Ship/Player

As stated in the main game page, the player controls a ship using the d-pad. When a player presses a direction, the
ship rotates to the direction in which the player is pressing(ex. player presses left, ship rotates and moves left). The
player shoots lasers by pressing a, and the lasers also go in the direction that the ship is facing in. The controls for the
game are very simple, thus a simple and fun game! Here is the code to get the ship showing up in the game:

sprites = []
ship = stage.Sprite(image_bank_1, 0, 80, 64)
sprites.insert (0, ship) # insert at the top of sprite list

The code for moving the ship is in the main game page.

20 Chapter 4. Game

20

21

22

23

CHAPTER B

Menu System

To make the game look more professional, there are three extra scenes in our game: The start scene(main menu), the
splash scene, and Game Over Scene.

5.1 Menu Scene

The main menu scene includes the title of the game(Asteroids), the background(which is talked about in this docu-
mentation), and an option to play easy mode or hard mard by pressing a or b respectively. Here is the code for the
main menu scene:

def main_menu_scene () :
this function is the menu scene
this code is only temporary so that I can work on game scene

an image bank for CircuitPython
image_bank_0 = stage.Bank.from_bmpl6 ("background.bmp™)
stage.Bank.from bmpl6 ("meteor.bmp")

image_bank_1

difficulty multipliers that will be passed over to the game scene
easy_mode = 1
hard_mode = 3

sets the background
background = stage.Grid(image_bank_0, constants.SCREEN_GRID_X,
constants.SCREEN_GRID_Y)
for x_location in range (constants.SCREEN_GRID_X) :
for y_location in range (constants.SCREEN_GRID_Y) :
tile_picked = random.randint (0, 15)
background.tile(x_location, y_location, tile_picked)

sprites = []

text = []

textl = stage.Text (width=29, height=14, font=None, palette=constants.MT_GAME_STUDIO__
—PALETTE, buffer=Nome) (continues on next page)

21

24

25

26

27

28

29

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

Space Aliens - CircuitPython Game

(continued from previous page)

textl.move (10, 20)

textl.text ("Asteroid Breaker")

text.append(textl)

text2 = stage.Text (width=29, height=14, font=None, palette=constants.MT_GAME_STUDIO_
—PALETTE, buffer=None)

text2.move (5, 100)

text2.text ("A = Easy B = Hard")

text.append (text?2)

title_meteor = stage.Sprite(image_bank_1, 0, 80, 64)
sprites.append(title_meteor)

create a stage for the background to show up on
and set the frame rate to 60fps

game = stage.Stage (ugame.display, 60)

set the layers, items show up in order

game.layers = sprites + text + [background]
render the background and inital location of sprite list

most likely you will only render background once per scene
game.render_block ()

repeat forever, game loop

while True:

keys = ugame.buttons.get_pressed()

get user input

if keys & ugame.K_X != 0:
game_scene (easy_mode)

if keys & ugame.K_O != 0:

game_scene (hard_mode)

update game logic
redraw sprite list
pass # just a placeholder until you write the code

The main menu scene leads into the main game.

5.2 Splash Scene

The splash scene includes 3 short splash scenes before reaching the main menu scene. the entire game begins with a
short white screen which shows up for half a second:

def blank_white_reset_scene () :
this function is the blank splash scene game loop

do house keeping to ensure everythng 1is setup
reset sound to be off

sound = ugame.audio

sound.stop ()

sound.mute (False)

an image bank for CircuitPython

(continues on next page)

22 Chapter 5. Menu System

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

20

21

22

23

24

25

26

27

Space Aliens - CircuitPython Game

(continued from previous page)

image_bank_1 = stage.Bank.from_bmpl6 ("mt_game_studio.bmp")

sets the background to image 0 in the bank
background = stage.Grid(image_bank_1, 160, 120)

create a stage for the background to show up on

and set the frame rate to 60fps

game = stage.Stage (ugame.display, 60)

set the layers, items show up in order

game.layers = [background]

render the background and inital location of sprite 1list

most likely you will only render background once per scene
game.render_block ()

repeat forever, game loop
while True:
get user input
update game logic
Wait for 1/2 seconds
time.sleep(0.5)

mt_splash_scene ()

redraw sprite 1list

Then, a splash screen which displays MT Studios along with a lightbulb image appears for a second:

def mt_splash_scene():
this function is the MT splash scene

an image bank for CircuitPython
image_bank_2 = stage.Bank.from_bmpl6 ("mt_game_studio.bmp")

sets the background to image 0 in the bank
background = stage.Grid(image_bank_2, constants.SCREEN_GRID_X, constants.SCREEN_
—GRID_Y)

used this program to split the iamge into tile: https://ezgif.com/sprite-cutter/
—ezglf-5-818cdbcc3f66.png

background.tile (2, 2, 0
background.tile (3,
background.tile (
background.tile (

(

(

blank white
, 1
, 2
, 3
background.tile 4
background.tile 0

~

~ o U1 b
~
DD NN

~

blank white
background.tile # blank white
background.tile
background.tile
background.tile
background.tile
background.tile

~

~

~

~

~N oy U W N
~

W w w w w w
~

O 0 J o U O

~

blank white

background.tile (2, 4, 0) # blank white
background.tile (3, 4, 9)
background.tile (4, 4, 10)

(continues on next page)

5.2. Splash Scene

23

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Space Aliens - CircuitPython Game

(continued from previous page)

background.tile(5, 4, 11)
background.tile (6, 4, 12)
background.tile(7, 4, 0) # blank white

background.tile (2, 5, 0) # blank white
background.tile (3, 5, 0)
background.tile (4, 5, 13)
background.tile (5, 5, 14)
background.tile (6, 5, 0)
background.tile(7, 5, 0) # blank white

~

text = []

textl = stage.Text (width=29, height=14, font=None, palette=constants.MT_GAME_STUDIO__
—PALETTE, buffer=None)

textl.move (20, 10)

textl.text ("MT Game Studios")

text.append(textl)

create a stage for the background to show up on

and set the frame rate to 60fps

game = stage.Stage (ugame.display, 60)

set the layers, items show up in order

game.layers = text + [background]

render the background and inital location of sprite 1list

most likely you will only render background once per scene
game.render_block ()

repeat forever, game loop
while True:
get user input
update game logic
Wait for 1 seconds
time.sleep(1.0)

game_splash_scene ()

redraw sprite 1list

Finally, a splash screen which displays our “company” name(Rousseau & Watson Corporations) is shown for a second,
along with a coin sound:

def game_splash_scene() :
this function is the game scene

an image bank for CircuitPython
image_bank_2 = stage.Bank.from_bmpl6 ("mt_game_studio.bmp")

sets the background to image 0 in the bank
background = stage.Grid(image_bank_2, constants.SCREEN_GRID_X, constants.SCREEN_
—GRID_Y)

text = []

textl = stage.Text (width=29, height=14, font=None, palette=constants.MT_GAME_STUDIO_
—PALETTE, buffer=None)

(continues on next page)

24 Chapter 5. Menu System

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Space Aliens - CircuitPython Game

(continued from previous page)

textl.move (19, 50)
textl.text ("Rousseau & Watson")
text.append(textl)

text2 = stage.Text (width=29, height=14, font=None, palette=constants.MT_GAME_STUDIO_
—PALETTE, buffer=None)

text2.move (35, 60)

text2.text ("Corporations")

text.append (text2)

get sound ready
follow this guide to convert your other sounds to something that will work

https://learn.adafruit.com/microcontroller—-compatible-audio-file—-conversion
coin_sound = open("coin.wav", 'rb'")
sound = ugame.audio

sound.stop ()
sound.mute (False)
sound.play (coin_sound)

create a stage for the background to show up on
and set the frame rate to 60fps
game = stage.Stage (ugame.display, 60)
set the layers, items show up in order
game.layers = text + [background]
render the background and inital location of sprite 1ist
most likely you will only render background once per scene
game.render_block ()
repeat forever, game loop
while True:
get user input

update game logic
time.sleep(1.0)
main_menu_scene ()

After, the game moves to the main menu scene.

5.3 Game Over Scene

The game moves to the game over scene when the player loses all three of their lives. The game over scene displays
score that they received when they died, as well as an option to go back to the menu scene by pressing any button.
When the player presses a button, the game returns to the main menu scene, where they can play again.

def game_over_scene (final_score) :
this function is the game over scene
an image bank for CircuitPython
image_bank_2 = stage.Bank.from_bmpl6 ("mt_game_studio.bmp")

sets the background to image 0 in the bank
background = stage.Grid(image_bank_2, constants.SCREEN_GRID_X, constants.SCREEN_
—GRID_Y)

text = []

(continues on next page)

5.3. Game Over Scene 25

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

54

55

57

58

60

61

62

63

64

65

66

67

Space Aliens - CircuitPython Game

(continued from previous page)

textl = stage.Text (width=29, height=14, font=None,
palette=constants.MT_GAME_STUDIO_PALETTE, buffer=None)

textl.move (30, 66)

textl.text ("Your Score: {:0>2d}".format (final_score))

text.append (textl)

text2 = stage.Text (width=29, height=14, font=None,
palette=constants.MT_GAME_STUDIO_PALETTE, buffer=None)

text2.move (35, 20)

text2.text ("GAME OVER!!!™)

text.append (text?2)

text3 = stage.Text (width=29, height=14, font=None,
palette=constants.MT_GAME_STUDIO_PALETTE, buffer=None)

text3.move (27, 110)

text3.text ("PRESS ANY BUTTON!™)

text.append (text3)

text4d = stage.Text (width=29, height=14, font=None,
palette=constants.MT_GAME_STUDIO_PALETTE, buffer=None)

text4d .move (27, 120)

textd.text ("TO MAIN MENU")

text.append (text4)

create a stage for the background to show up on

and set the frame rate to 60fps

game = stage.Stage (ugame.display, 60)

set the background layer

game.layers = text + [background]

render the background

most likely you will only render background once per scene
game.render_block ()

repeat forever, game loop
while True:
get user input

keys = ugame.buttons.get_pressed()

if keys & ugame.K_SELECT != O:
keys = 0
main_menu_scene ()

elif keys & ugame.K_START != 0:
keys = 1
main_menu_scene ()

elif keys & ugame.K_X != O:
keys = 2
main_menu_scene ()

elif keys & ugame.K_O != O:
keys = 3
main_menu_scene ()

elif keys & ugame.K_UP != O:
keys = 4
main_menu_scene ()

elif keys & ugame.K_DOWN != 0:
keys = 5
main_menu_scene ()

elif keys & ugame.K_LEFT != 0:
keys = 6

(continues on next page)

26 Chapter 5. Menu System

68

69

70

71

72

3

Space Aliens - CircuitPython Game

(continued from previous page)

main_menu_scene ()
elif keys & ugame.K_RIGHT != 0:
keys = 7
main_menu_scene ()
redraw sprite list
pass # just a placeholder until you write the code

5.3. Game Over Scene

27

	Install CircuitPython
	Your IDE
	Hello, World!

	Image Banks
	Game
	Background
	Ship/Player

	Menu System
	Menu Scene
	Splash Scene
	Game Over Scene

